
Chapter 3

Differential equations

3.1 Problems DE-1

3.1.1 Topics of this homework:
Complex numbers and functions (ordering and algebra), complex power series, fundamental theorem of calculus
(real and complex); Cauchy-Riemann conditions, multivalued functions (branch cuts and Riemann sheets)

3.1.2 Complex Power Series
Problem # 1: In each case derive (e.g., using Taylor’s formula) the power series of w(s) about
s = 0 and give the RoC of your series. If the power series doesn’t exist, state why! Hint: In
some cases, you can derive the series by relating the function to another function for which you
already know the power series at s = 0.

– 1.1: 1/(1− s)
Sol: 1/(1− s) =

∑∞
n=0 s

n, which converges for |s| < 1 (e.g., the RoC is |s| < 1) �

– 1.2: 1/(1− s2)
Sol: 1/(1 − s2) =

∑∞
n=0 s

2n, which converges for |s2| < 1. (e.g., the RoC is |s| < 1). One can also factor the
polynomial, thus write it as: 1

(1−s)(1+s) . There are two poles, at s = ±1, and each has an RoC of 1. �

– 1.3: 1/(1 + s2).
Sol: The resulting series is 1/(1 + s2) = 0.5

∑∞
n=0 s

n((−i)n + (i)n). The RoC is |s| < 1. We can see this
by considering the poles of the function at s = ±i; both poles are 1 from s = 0, the point of expansion. An
alternative is to write the function as 1/(1− (is)2) =

∑
(is)n. �

– 1.4: 1/s
Sol: If you try to do a Taylor expansion at s = 0, the first term, w(0)→∞. Thus, the Taylor series expansion in
s does not exist. �

– 1.5: 1/(1− |s|2)
Sol: The imaginary part is zero. Thus the derivative of the imaginary part is zero. Thus the CR conditions cannot

be obeyed. �

Problem # 2: Consider the function w(s) = 1/s

– 2.1: Expand this function as a power series about s = 1. Hint: Let 1/s = 1/(1−1+s) =
1/(1− (1− s)).
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Sol: The power series is

w(s) =

∞∑
n=0

(−1)n(s− 1)n,

which converges for |s− 1| < 1.
To convince you this is correct, use the Matlab/Octave command syms s; taylor(1/s,s,’ExpansionPoint’,1),

which is equivalent to the shorthand syms s; taylor(1/s,s,1). What is missing is the logic behind this
expansion, given as follows: First move the pole to z = −1 via the Möbius “translation” s = z + 1, and expand
using the Taylor series

1

s
=

1

1 + z
=

∞∑
n=0

(−z)n.

Next back-substitute z = s− 1 giving
1

s
=
∑

(−1)n(s− 1)n.

It follows that the RoC is |z| = |s− 1| < 1, as provided by Matlab/Octave. �

– 2.2: What is the RoC?
Sol: As stated in the solution of 2.1, |s− 1| < 1. �

– 2.3: Expand w(s) = 1/s as a power series in s−1 = 1/s about s−1 = 1.
Sol: Let z = s−1 and expand about 1: The solution is w(z) = z, which has a zero at 0 thus a pole at∞. �

– 2.4: What is the RoC?
Sol: |s| > 0 or |z| <∞. �

– 2.5: What is the residue of the pole?
Sol: The pole is at∞. Since w(s) = 1/s and applying the definition for the residue c−1 = lims→∞ s(1/s) = 1.
Thus residue is 1. Note that it is the amplitude of the pole, which is 1. �

Problem # 3: Consider the function w(s) = 1/(2− s)

– 3.1: Expand w(s) as a power series in s−1 = 1/s. State the RoC as a condition on |s−1|.
Hint: Multiply top and bottom by s−1.
Sol: 1/(2− s) = −s−1/(1− 2s−1) = −s−1

∑
2ns−n. The RoC is |2/s| < 1, or |s| > 2. �

– 3.2: Find the inverse function s(w). Where are the poles and zeros of s(w), and where is
it analytic?
Sol: Solving for s(w) we find 2 − s = 1/w and s = 2 − 1/w = (2w − 1)/w. This has a pole at 0 and a zero at
w = 1/2. The RoC is therefore from the expansion point out to, but not including w = 0. �

Problem # 4:Summing the series
The Taylor series of functions have more than one region of convergence.

– 4.1: Given some function f(x), if a = 0.1, what is the value of

f(a) = 1 + a+ a2 + a3 + · · ·?

Show your work. Sol: To sum this series, we may use the fact that

f(a)− af(a) = (1 + a+ a2 + a3 + · · · )− a(1 + a+ a2) = 1 + a(1− 1) + a2(1− 1) + · · ·

This gives (1− a)f(a) = 1, or f(a) = 1/(1− a). Now since a = .1, the sum is 1/(1− 0.1) = 1.11. �

– 4.2: Let a = 10. What is the value of

f(a) = 1 + a+ a2 + a3 + · · ·?

Sol: In this case the series clearly does not converge. To make it converge we need to write a formula for y = 1/x
rather than for x.

f(1/y)−f(1/y)/a = (1+1/a+1/a2 +1/a3 + · · · )−1/a(1+1/a+a1/2) = 1+(1−1)/a+(1−1)/a2 + · · ·

This gives f(1/a) = −a−1/(1−a−1). Now since a = 10, the series sums to f(10) = −0.1/(1−0.1) = −1/9. �
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3.1.3 Cauchy-Riemann Equations

Problem # 5: For this problem  =
√
−1, s = σ + ω, and F (s) = u(σ, ω)+ v(σ, ω). Ac-

cording to the fundamental theorem of complex calculus (FTCC), the integration of a complex
analytic function is independent of the path. It follows that the derivative of F (s) is defined as

dF

ds
=

d

ds
[u(σ, ω) + v(σ, ω)] . (DE-1.1)

If the integral is independent of the path, then the derivative must also be independent of the direction:

dF

ds
=
∂F

∂σ
=

∂F

∂ω
. (DE-1.2)

The Cauchy-Riemann (CR) conditions

∂u(σ, ω)

∂σ
=
∂v(σ, ω)

∂ω
and

∂u(σ, ω)

∂ω
= −∂v(σ, ω)

∂σ

may be used to show where Equation DE-1.2 holds.

– 5.1: Assuming Equation DE-1.2 is true, use it to derive the CR equations.

Sol: First form the partial derivatives as indicated and then set the real and imaginary parts equal. This results
in the two CR equations. �

– 5.2: Merge the CR equations to show that u and v obey Laplace’s equations.

∇2u(σ, ω) = 0 and ∇2v(σ, ω) = 0.

Sol: Take partial derivatives with respect to σ and ω and solve for one equation in each of u and v. �

– 5.3: What can you conclude?

Sol: We can conclude that the real and imaginary parts of complex analytic functions must obey these condi-
tions. �

Problem # 6: Apply the CR equations to the following functions. State for which values of
s = σ + iω the CR conditions do or do not hold (e.g., where the function F (s) is or is not
analytic). Hint: Review where CR-1 and CR-2 hold.

– 6.1: F (s) = es

Sol: CR conditions hold everywhere. �

– 6.2: F (s) = 1/s

Sol: CR conditions are violated at s = 0. The function is analytic everywhere except s = 0. �

3.1.4 Branch cuts and Riemann sheets
Problem # 7: Consider the function w2(z) = z. This function can also be written as w±(z) =√
z±. Assume z = reφ and w(z) = ρeθ =

√
reφ/2.

– 7.1: How many Riemann sheets do you need in the domain (z) and the range (w) to fully
represent this function as single-valued?
Sol: There is one sheet for z and two sheet for w = ±

√
z. When any point in the domain z (being mapped to

w(z)) crosses the z branch cut, the codomain (range) w±(z) switches from the w+ sheet to the w− sheet. w(z)
remains analytic on the cut. Look at Fig. 4.4 in Chap. 4 (p. 130) to see how this works. �


